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Evolution of turbulence in an oscillatory flow in a smooth-walled channel:
A viscous secondary instability mechanism
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In this paper, a comparison is made of the evolution of turbulence in oscillatory channel flows with a
zero-mean velocity in two and three dimensions, using the numerical technique of the lattice Boltzmann
method. The results confirm a primary two-dimensional instability. Evidence is shown of a secondary, viscous
three-dimensional instability mechanism acting in the oscillatory boundary layer, which is consistent with
experimental observations.
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[. INTRODUCTION of a with A=a/5=a/v2. Exact analytical solutions exist
for laminar flows and these agree well with experimental
Oscillatory and pulsating flows occur in a variety of results. Expgrimental studies of c_)s_,cillatory flows with a zero-
Sca|es and app"cations ranging from natura”y Occurring exmean Ve|0C|ty |nd|Cate that tl’anSItIO_n to turbu|enC_e OCcurs In
amples, such as blood flow in arteries, air flow in the wind-the range S08Re;<550 at phases in the flow which corre-
pipe, or larger scale examples such as wave motion ov ond to the regions of maximum flow velocity. This transi-

: . X : . flon phenomenon is clearly observable and consistent data
sand beds in oceanographic studies to technological applic 'avepbeen publishe[cﬁ—ll].yThis is at odds with analytical
tions, such as the flow in engine cylinders and oscillatoryS

) . , o tability analyseg3,4]. Theoretical analyses are hampered

chemical mixers. Unsteady flows can be either perigdie  py a |ack of derivations of the critical Reynolds number

ther pulsating or purely oscillatoryor aperiodic, for ex-  pased on linear theories from which nonlinear theories can
ample, a flow undergoing sudden acceleration. Here, purelge developed. Local instabilities exist in the Stokes boundary
oscillatory flow with a zero-mean velocity in wall-bounded layer and it is generally agreed, for problems where the
channels is examined. Besides being a relatively simple flowwoundary layer is small compared to the physical dimensions
which has an exact analytical solution of the Navier-Stoke®f the problem, that this is the cause of transition to turbu-
equation in the laminar regime, it also serves as a prototyptence. Therefore, for theoretical stability analyses, much of

problem from which conclusions can be inferred for morethe work revolves around studying infinitesimal disturbances
complicated nonperiodic flows in the Stokes layer for which the equations of motion can be

The phenomenon of turbulence represents a continu linearized. The problem is generally approached using Flo-
P . ce rep i . (uet or quasisteady theorigk,3,4]. In quasisteady theories,
challenge to theoreticians, numericists, and experimentalis

I , ‘ A e spatially dependent profiles of the flow are examined at
and this is particularly the case when investigating purelygitferent instances of time and therefore the profiles have
oscillatory flows, where there is a difference between theopnly a parametric dependence on time. This method differs
retical predictions[1-5] and experimental observations from the time-dependent ones that use the Floquet theory to
[6—11]. Evidently, numerical modeling can aid the under-examine disturbances in the periodic steady state. However,
standing of this phenomenon and serve to bridge the dispathese either do not predict the correct phase for the onset of
ity between the theory and the experiment. Despite this, thereirbulence or do not predict instability growth over a large
have been relatively few numerical studies performed relatrange of Rg and wave numbell].
ing to purely oscillatory flows and the examination of the The discord between the theory and the experiment has
evolution of turbulence, most notably Refg,12,13. been explained by a secondary inviscid instability mecha-
In this paper, we present the results of a direct numericahism whereby the existence of finite-amplitude waves leads
simulation of the evolution of three-dimensional turbulenceto vortical structures within the flow that are inviscidly un-
in an oscillatory flow with a zero-mean velocity using the Stable to three-dimensional perturbations. Pierrehunihéft
lattice Boltzmann methodLBM). The results are in agree- argues that with regard to the transition to a developed tur-

ment with experimental observations and provide evidenc@Ulence spectrum, the short-wave behavior of the instability
about the nature of the transition mechanism. implies that the development of a full three-dimensional tur-

For the case of a fluid with a kinematic viscosipscil-  Pulence spectrum does not require that energy be handed
lating with an angular frequenay in a channel with a half- down in a cascade from scale to scale until the dissipation

) ) . .. _range is reached, rather the large eddies provide a route
mdth a, the;rele\':ar_ltt_nond:crr:ﬁns}llonal par&me\;{\?rs deslcnbmgvhereby energy can be injected directly into the dissipation

€ main characleristics of the flow are the WOmErSI€y paz,,qa Therefore, the broadband nature of this instability pro-
rametera=aw/v and the Reynolds number based on they;jes a mechanism for the rapid generation and growth of
Stokes layer thickness, ReUqd/v. Here, Ug is the maxi-  gmall scales from a smooth velocity profi,14,15. Akha-
mum amplitude of the velocity ané= \2v/ o is the Stokes  yan, Kamm, and Shapi®] identified this secondary insta-

layer thickness. The Stokes parametés often used instead bility mechanism and suggested that it was inviscid, based
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on three-dimensional simulation results using a spectral

method. 3 bomain ' \\\\\\E

Previous (two-dimensional theoretical studies have \\
y

largely concentrated on examining the growtr decay . \
rates of initial perturbations at critical phases within the SB%Eﬁdary &
cycle. Direct numerical simulatior42] of oscillatory flow
between the walls with small imperfections have indicated
that the imperfections play a fundamental role in triggeringCo
transition to turbulence and no mention is made in these
studies of a secondary instability mechanism. In the current _
implementation, the wall is smooth with no imperfections. fi(x,t)=w;p[1+3e-u+3(e-u)>—3u?. 3
The inherent symmetry of the model is broken by perturbing

the simulation by an excitation of all simulated wave num-The distribution function can be expanded about the equilib-
bers over the entire computational domgi6] and therefore  rium value to obtain equations which represent the continuity
in the context of the current study, imperfections in the walland Navier-Stokes equatioi8,19 in the incompressible
would simply be interpreted as another method to perturb thémit for a fluid with a kinematic viscosity that is determined
inherent instabilities which exist in the flow. It is these insta-py the relaxation timer= (27— 1)/6 and an equation of state
bilities which are of concern in this paper and in particular,p:pC; wherec,=1/3 is the speed of sound.

evidence is shown that a secondary instability exists in the The computational domain is shown in Fig. 1, where the

2D Domain

FIG. 1. Schematic diagram of the computational domain and
ordinate system.

boundary layer. shadedx-y plane is the two-dimensional region and the full
volume is the three-dimensional domain. At the solid bound-
Il. THE LATTICE BOLTZMANN MODEL aries, a halfway bounce back boundary condition is applied
. , ) such that any distribution functiofia(x,t ), which is stream-
The relative merits of the LBM are well established’]; ing from a “fluid” grid point to a “wall” grid point, is re-
it lends itself naturally to parallel implementation, boundaryjgcteq asf; (x,t"), wheree,=—e andt~ andt® are the

conditions are easily applied, and it is easily interpreted injmes just before and just after streaming, respectively. For
physical terms. The two-dimensiondthree-dimensional 5504 surfaces aligned with one of the link vectars this

simulations were performed using the D2QEB] (D3Q15 o nce back rule simulates a boundary which is halfway
[18]) model where each grid site is connected td18)  pepween the fluid and the wall sites and exhibits a second-
neighboring sites by the link vectory on a square grid  orger accuracy16,21,23. When more complex boundaries

including diagonals(cubic grid with six vectors along the e required in a simulation, the bounce back technique pro-
three axes of the cube and eight vectors along the diagonals;jges an efficient boundary treatment, however, an alterna-
the final link direction is the null vectogy. The following  {je approach is required to achieve the second-order accu-
desc_:rlptlo_n_of the LBM is applicable to both models whereracy see, for example, Ref23] and references therein.

the indexi is assumed to run from 0 to @ to 14 for the  periodic boundary conditions are applied to all other bound-

D2Q9(D3Q15 model. o aries. The flow is driven by an oscillatory pressure gradient
The fluid is described in terms of the distribution func- \hich is implemented as an oscillatory body forée

tions f;(x,t) from which the local fluid density and velocity = (P sin(wt),0,0) in Egs.(1) and(2), where the values d?,
can be determined 449] the amplitude of the pressure gradient driving the flow, @nd
. are selected to give the desired values of; Bed «. This
PZZ f; and PUa:Z fi€iat 2 Fa, (1) implementation of a body force can be shown to satisfy the
continuity and Navier-Stokes equations up to second order
whereF is an external body forcéer unit volume and the  [16,19. To trigger the turbulence it is necessary to introduce
Greek subscripts represent the vector Components and tl@esma” random variation into the simulation in order to dis-
summation over repeated Greek indices is assumed. The dislrb the inherent symmetry. This was done by perturbing the
tribution functions evolve according to the discrete Boltz-forcing term to produce small irregularities in the flow with
mann equatiofi19,20 an energy of the order of 18, when normalized to the
energy of the mean flow. The simulations were initialized
f.(x+6,t+1)—fi(x,t)= _—1[fi(X,t)—f_i(X,t)] using the an_alytic_ solution for the laminar case. This pre-
T vented transients in the flow and the same turbulent charac-
971 teristics were observed in each half period with variations
+3——wF,e,, (2 Whichwere consistent with the turbulent nature of the flow
27 rather than a systematic time-dependent variation originating
from the initialization as found in Refl16]. A detailed de-

where 7 is the relaxation time andy; is a weight function scription of the numerical technique applied in two dimen-

With Wo= 3¢, Wy,...Ws;=35, andws,... Wg=35 (Wo= 73, sions can be found in Ref16].

Wy,... We=73, andwy,...,w,=7;) for the D2Q9(D3Q15 For the current investigationy=7, giving a ratio of the
model. The equilibrium distribution functioh(x,t) is deter-  half-channel width to the Stokes layer &f=4.95. This
mined from the local density and velocity k7] value of @ was chosen as a compromise between keeping
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Note that in the two-dimensional cas€,=u,=0. Superim-

g+ posed on the plots are the lines of zero veloé¢lilack) and

g:ge in Fig. 2(b) the maximum velocity magnitudéyhite) which

0.32 serve as the references of flow reversal and maximum veloc-
028 ity, respectively. Both these lines were calculated from the
g-fe exact analytical solutions for laminar flow. A comparison of
0.12 Figs. 2a) and 2b) indicates that the maximum turbulent

intensities are generated at different phases for the two-
dimensional and three-dimensional simulations. In both
cases, the initial disturbance field appears localized near the
wall. In the two-dimensional case, the turbulent energy peaks
are near the linear critical layer and neighboring inflexion
points with the disturbances quickly migrating toward the
center of the channel in agreement with quasisteady linear
stability theoried13]. In the three-dimensional case, there is
q* also an instability atwt= 7, however, a significantly larger

04 burst of turbulence is generated in the region of the maxi-

ggg mum flow velocity atwt=3#/2 in agreement with previous
333 experimental results. For the three-dimensional case, we note
e that the results are in good agreement with the experiment
— 012 [6—11] in terms of the phase and relative channel locations at
Do which rapid turbulence develops and we now proceed to ex-
amine the mechanism which generates this phenomenon.
Pierrehumberf14] has investigated a short-wave instabil-
ity of two-dimensional eddies in an inviscid fluid while
Landman and Saffmali5] have extended this work for el-
ot liptical flow when the viscosity is nonzero. In this case, the
FIG. 2. Evolution of turbulent intensity across the width of a NOndimensional parameters of primary interest are the Ek-
channel for(a) a two-dimensional antb) a three-dimensional flow. Man numbelEy=47wk2/y, whereE, is based on the vor-
ticity y with k the wave number and8=2ely= (x>

this ratio relatively large while obtaining a sufficient resolu- — 1)/(x’+1). The parametep is the ratio of straine to

tion in the boundary layer, in this case, 15 lattice nodes. W&/Orticity andy is the aspect ratio of the elliptical streamlines.
note that the resolution of the boundary layerig.5 that of ~ ON performing a stability analysis of an elliptical flow which
Akhavan's [2]. A single Reynolds number Re850 was is an_exact solutlon of the Navier-Stokes equatipts], a _
chosen well above the critical range for transition to turbu-Stability boundary in the Ekman number versus streamline
lence, 508 Re,<550, and therefore the current investigation CCentricity plane can be found. Considering a viscous insta-
is not concerned with transition in the sense of finding criti-Pility with @ length scalél, two bounds can be defined. A
cal Reynolds numbers, but with the generation and evolutiofPWer bound I, associated with the wave numbel

of turbulent bursts in the flow at critical phases. Furthermore = 27/Ko, defines the minimum length scale a disturbance
critical scales associated with the vortices at the point of€duires and in the context of the current investigation, the
transition to turbulence at these phases are examined. FirstM@gcroscopic length scale of intereséiwhich represents the
comparison is made between direct numerical simulations dfPPer limit of the length scale so thig=<|< . It is conve-

a two-dimensional(2D) and a three-dimensional channel nient to. normalize the Iepgth sca!e to the Stokes boundary
performed using the lattice Boltzmann model. In both casedayer thicknesd* =1/4. Figure 3 displays the component
148 grid points were used in the direction, between the of the dimensionless vorticityy* = ya/U,, as a function of

channel walls, and 128 in the continuous directions. (x*,y*,z* =Z*/2) over half the channel width (Qy*<1)
at selected phases of the oscillation period. Xlscemponent

of y* is shown in Fig. 4 as a function of xt
Il RESULTS AND DISCUSSION =X*/2y*,z*) at the same phases as Fig. 3. Het&, and

Figures 2a) and 2b) indicate the evolution of the Z* are 'ghe dimension_less grid Iengthsf in the continuoaad
_ ] ) — = — z directions, respectively. A comparison of Figs. 3 and 4
normalized turbulent intensityq* = V(u*+uy?+u;?)/  determines the extent to which the vortices are two dimen-
V(u,2+u,2+u,?) over approximately half a period for both Sional or three dimensional.
the 2D and 3D computational domains. The overbar repre- At wt=1.067 [Fig. 3@)], yx is significantly smaller than
sents averaging over all points with the saynealue and the 7, , indicating that the circulations are predominantly two
prime superscripts indicate fluctuating values of velocity.dimensional. Here, vortices in the boundary layer* (

Throughout the paper, a superscriptepresents a dimen- >0.8) are sheared and streaks of vorticity can be observed.
sionless quantity withx* =x/a, y*=y/a, and z*=2z/a. Treating these as ellipses and with an ellipse aspect satio

T
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FIG. 3. Normalized vorticity calculated from the three-  FIG. 4. Normalized vorticity calculated from the three-
dimensional simulations a* =Z7*/2 for (a) wt=1.06m, (b) wt dimensional simulations at* =X*/2 for (a) wt=1.06mr, (b) wt
=1.22m, (¢) ot=1.33m, (d) ot=1.38m, and(e) wt=1.457. =1.227, (0) wt=1.33m, (d) wt=1.38r, and(e) wt=1.457.

~3, a length scalé} ~2 is obtained. Therefore, the second- instability is fundamental to the development of vortices in
ary instability mechanism appears unlikely to be responsibléhe boundary layer and these persist and increase in vorticity
for the transient growth and spread of the turbulence at thigs the flow accelerates as shown in Fif)3 wt=1.227).
phase but rather is caused by the primary instability as deHere, the magnitude of} is comparable although slightly
scribed in, for example, Ref§2,16]. However, this primary  smaller thany; in the boundary layer, indicating that the
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three-dimensional motion is developing in the boundaryobserved in the current investigation is consistent with pre-
layer. This three-dimensional motion is in part due to thevious numerical investigationg2,13] and previous experi-
vortices in the boundary layer tilting about theandz axes  mental result§6—11]. Costamagna, Vittori, and Blondeaux
and in part due to a rotatiofpredominantly in the/-z plane [13] observe similar behavior for the values of Rmmpa-
along the major axes of the vortices. The two-dimensionatable to that used in the present study in terms of the initial
circulations outwith the boundary layer persist and appear tgeneration of vortical streaks in the boundary layEig.
pull the turbulence within the Stokes layer into the main flow3(b)], which rotate in a similar manner as previously dis-
further tilting the vortices in the boundary layer region. At cussed and which move into the bulk flgw3].
this phase t=1.227), a length scale of§ ~1 is obtained Thus the initial generation of fluctuations is caused by the
based on an aspect ratio pf 3. We note thatz)‘ is the same primary instability at flow reversal. These vortices persist in
order of magnitude as and indeed there is no evidence of the boundary layer, shearing, stretching and tilting, and in-
rapid three-dimensional transition at this ph4Bey. 2(b)].  evitably breaking up. In the region of maximum flow veloc-
The increase in turbulent intensity appears to be a result dfy, this process yields vortices of a size enabling short-wave
the tilting and rotational motion of the originally two- instabilities to exist and it is at this region where a rapid
dimensional vortices in the boundary layer. transition to fully developed three-dimensional turbulence
The continual stretching and tilting break up the elongatedccurs. This rapid transition occurs in the boundary layer and
vortices forming a range of elliptical length scales which canPpropagates into the bulk flow.
be observed avt=1.33x [Fig. 3(c)]. Here,I§ reaches mini-
mum values~0.5 and is now approaching the correct order IV. CONCLUSION AND FUTURE WORK
of magnitude enabling short-wave instabilities to exist. We
note that this is the point just prior to the onset of the rapidfIO
transition to fully developed three-dimensional turbulence

In conclusion, the LBM simulations of two-dimensional

w were consistent with two-dimensional linear stability

i . . . ‘analyses, while the three-dimensional simulations were in
As the*flow further_mcreases n VG|0CIty;t=1.38r;;r [Fig. good agreement with the experimental observations. Evi-
3(d)], 1o reaches minimum values 6¢0.4. From Fig. 2), ence has been presented to support the existence of a vis-
we note that this phase represents the region in the flow Qlg s secondary instability mechanism. Further analysis of
the rapid increase and spreading of turbulent intensity, ang,.¢ phenomenon over a wide rangec&nd Rg is required
indeed three-dimensional, approximately spherical, vorticeg, clarify the precise role of this instability mechanism in

with radii r=<0.255 exist, two-dimensional slices of which ; ; ; ;
d enerating explosive turbulent growth in oscillatory flows.
can be seen in Figs.(® and 4d). This phase in the flow g g &P ¢ y

corresponds to maximum velocity in the bulk flow within the

boundary layer. As the flow begins to decelerate, Figs) 3

and 4e), at wt=1.45, the turbulence is fully three dimen-  This work was partially supported by EPSROK) under

sional and extends toward the center of the channel. Grant No. GR/N16778 and this assistance is gratefully
The phase at which a rapid transition to turbulence isacknowledged.
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