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Evolution of turbulence in an oscillatory flow in a smooth-walled channel:
A viscous secondary instability mechanism
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In this paper, a comparison is made of the evolution of turbulence in oscillatory channel flows with a
zero-mean velocity in two and three dimensions, using the numerical technique of the lattice Boltzmann
method. The results confirm a primary two-dimensional instability. Evidence is shown of a secondary, viscous
three-dimensional instability mechanism acting in the oscillatory boundary layer, which is consistent with
experimental observations.
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I. INTRODUCTION

Oscillatory and pulsating flows occur in a variety
scales and applications ranging from naturally occurring
amples, such as blood flow in arteries, air flow in the win
pipe, or larger scale examples such as wave motion o
sand beds in oceanographic studies to technological app
tions, such as the flow in engine cylinders and oscillat
chemical mixers. Unsteady flows can be either periodic~ei-
ther pulsating or purely oscillatory! or aperiodic, for ex-
ample, a flow undergoing sudden acceleration. Here, pu
oscillatory flow with a zero-mean velocity in wall-bounde
channels is examined. Besides being a relatively simple fl
which has an exact analytical solution of the Navier-Sto
equation in the laminar regime, it also serves as a protot
problem from which conclusions can be inferred for mo
complicated nonperiodic flows.

The phenomenon of turbulence represents a contin
challenge to theoreticians, numericists, and experimenta
and this is particularly the case when investigating pur
oscillatory flows, where there is a difference between th
retical predictions @1–5# and experimental observation
@6–11#. Evidently, numerical modeling can aid the unde
standing of this phenomenon and serve to bridge the dis
ity between the theory and the experiment. Despite this, th
have been relatively few numerical studies performed re
ing to purely oscillatory flows and the examination of t
evolution of turbulence, most notably Refs.@2,12,13#.

In this paper, we present the results of a direct numer
simulation of the evolution of three-dimensional turbulen
in an oscillatory flow with a zero-mean velocity using th
lattice Boltzmann method~LBM !. The results are in agree
ment with experimental observations and provide evide
about the nature of the transition mechanism.

For the case of a fluid with a kinematic viscosityn oscil-
lating with an angular frequencyv in a channel with a half-
width a, the relevant nondimensional parameters describ
the main characteristics of the flow are the Womersley
rametera5aAv/n and the Reynolds number based on t
Stokes layer thickness, Red5U0d/n. Here, U0 is the maxi-
mum amplitude of the velocity andd5A2n/v is the Stokes
layer thickness. The Stokes parameterL is often used instead
1063-651X/2003/68~2!/026302~5!/$20.00 68 0263
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of a with L5a/d5a/&. Exact analytical solutions exis
for laminar flows and these agree well with experimen
results. Experimental studies of oscillatory flows with a ze
mean velocity indicate that transition to turbulence occurs
the range 500,Red,550 at phases in the flow which corre
spond to the regions of maximum flow velocity. This tran
tion phenomenon is clearly observable and consistent
have been published@6–11#. This is at odds with analytica
stability analyses@3,4#. Theoretical analyses are hamper
by a lack of derivations of the critical Reynolds numb
based on linear theories from which nonlinear theories
be developed. Local instabilities exist in the Stokes bound
layer and it is generally agreed, for problems where
boundary layer is small compared to the physical dimensi
of the problem, that this is the cause of transition to turb
lence. Therefore, for theoretical stability analyses, much
the work revolves around studying infinitesimal disturbanc
in the Stokes layer for which the equations of motion can
linearized. The problem is generally approached using F
quet or quasisteady theories@1,3,4#. In quasisteady theories
the spatially dependent profiles of the flow are examined
different instances of time and therefore the profiles ha
only a parametric dependence on time. This method diff
from the time-dependent ones that use the Floquet theor
examine disturbances in the periodic steady state. Howe
these either do not predict the correct phase for the onse
turbulence or do not predict instability growth over a lar
range of Red and wave number@1#.

The discord between the theory and the experiment
been explained by a secondary inviscid instability mec
nism whereby the existence of finite-amplitude waves le
to vortical structures within the flow that are inviscidly un
stable to three-dimensional perturbations. Pierrehumbert@14#
argues that with regard to the transition to a developed
bulence spectrum, the short-wave behavior of the instab
implies that the development of a full three-dimensional t
bulence spectrum does not require that energy be han
down in a cascade from scale to scale until the dissipa
range is reached, rather the large eddies provide a r
whereby energy can be injected directly into the dissipat
range. Therefore, the broadband nature of this instability p
vides a mechanism for the rapid generation and growth
small scales from a smooth velocity profile@2,14,15#. Akha-
van, Kamm, and Shapiro@2# identified this secondary insta
bility mechanism and suggested that it was inviscid, ba
©2003 The American Physical Society02-1
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on three-dimensional simulation results using a spec
method.

Previous ~two-dimensional! theoretical studies hav
largely concentrated on examining the growth~or decay!
rates of initial perturbations at critical phases within t
cycle. Direct numerical simulations@12# of oscillatory flow
between the walls with small imperfections have indica
that the imperfections play a fundamental role in trigger
transition to turbulence and no mention is made in th
studies of a secondary instability mechanism. In the curr
implementation, the wall is smooth with no imperfection
The inherent symmetry of the model is broken by perturb
the simulation by an excitation of all simulated wave nu
bers over the entire computational domain@16# and therefore
in the context of the current study, imperfections in the w
would simply be interpreted as another method to perturb
inherent instabilities which exist in the flow. It is these ins
bilities which are of concern in this paper and in particul
evidence is shown that a secondary instability exists in
boundary layer.

II. THE LATTICE BOLTZMANN MODEL

The relative merits of the LBM are well established@17#;
it lends itself naturally to parallel implementation, bounda
conditions are easily applied, and it is easily interpreted
physical terms. The two-dimensional~three-dimensional!
simulations were performed using the D2Q9@18# ~D3Q15
@18#! model where each grid site is connected to 8~14!
neighboring sites by the link vectorsei on a square grid
including diagonals~cubic grid with six vectors along the
three axes of the cube and eight vectors along the diagon!;
the final link direction is the null vectore0 . The following
description of the LBM is applicable to both models whe
the indexi is assumed to run from 0 to 8~0 to 14! for the
D2Q9 ~D3Q15! model.

The fluid is described in terms of the distribution fun
tions f i(x,t) from which the local fluid density and velocit
can be determined as@19#

r5(
i

f i and rua5(
i

f ieia1 1
2 Fa , ~1!

whereF is an external body force~per unit volume! and the
Greek subscripts represent the vector components and
summation over repeated Greek indices is assumed. The
tribution functions evolve according to the discrete Bol
mann equation@19,20#

f i~x1ei ,t11!2 f i~x,t !5
21

t
@ f i~x,t !2 f̄ i~x,t !#

13
2t21

2t
wiFaeia , ~2!

wheret is the relaxation time andwi is a weight function
with w05 16

36 , w1 ,...,w45 4
36 , and w5 ,...,w85 1

36 (w05 16
72 ,

w1 ,...,w65 8
72 , andw7 ,...,w145

1
72 ) for the D2Q9~D3Q15!

model. The equilibrium distribution functionf̄ i(x,t) is deter-
mined from the local density and velocity as@17#
02630
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f̄ i~x,t !5wir@113ei•u1 9
2 ~ei•u!22 3

2 u2#. ~3!

The distribution function can be expanded about the equi
rium value to obtain equations which represent the continu
and Navier-Stokes equation@18,19# in the incompressible
limit for a fluid with a kinematic viscosity that is determine
by the relaxation timen5(2t21)/6 and an equation of stat
p5rcs

2, wherecs51/) is the speed of sound.
The computational domain is shown in Fig. 1, where t

shadedx-y plane is the two-dimensional region and the fu
volume is the three-dimensional domain. At the solid boun
aries, a halfway bounce back boundary condition is app
such that any distribution functionf i(x,t2), which is stream-
ing from a ‘‘fluid’’ grid point to a ‘‘wall’’ grid point, is re-
flected asf i 8(x,t1), whereei 852ei and t2 and t1 are the
times just before and just after streaming, respectively.
planar surfaces aligned with one of the link vectorsei , this
bounce back rule simulates a boundary which is halfw
between the fluid and the wall sites and exhibits a seco
order accuracy@16,21,22#. When more complex boundarie
are required in a simulation, the bounce back technique p
vides an efficient boundary treatment, however, an alter
tive approach is required to achieve the second-order a
racy, see, for example, Ref.@23# and references therein
Periodic boundary conditions are applied to all other bou
aries. The flow is driven by an oscillatory pressure gradi
which is implemented as an oscillatory body forceF
5„P sin(vt),0,0… in Eqs.~1! and~2!, where the values ofP,
the amplitude of the pressure gradient driving the flow, anv
are selected to give the desired values of Red and a. This
implementation of a body force can be shown to satisfy
continuity and Navier-Stokes equations up to second or
@16,19#. To trigger the turbulence it is necessary to introdu
a small random variation into the simulation in order to d
turb the inherent symmetry. This was done by perturbing
forcing term to produce small irregularities in the flow wi
an energy of the order of 1022, when normalized to the
energy of the mean flow. The simulations were initializ
using the analytic solution for the laminar case. This p
vented transients in the flow and the same turbulent cha
teristics were observed in each half period with variatio
which were consistent with the turbulent nature of the flo
rather than a systematic time-dependent variation origina
from the initialization as found in Ref.@16#. A detailed de-
scription of the numerical technique applied in two dime
sions can be found in Ref.@16#.

For the current investigation,a57, giving a ratio of the
half-channel width to the Stokes layer ofL54.95. This
value of a was chosen as a compromise between keep

FIG. 1. Schematic diagram of the computational domain a
coordinate system.
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EVOLUTION OF TURBULENCE IN AN OSCILLATORY . . . PHYSICAL REVIEW E68, 026302 ~2003!
this ratio relatively large while obtaining a sufficient resol
tion in the boundary layer, in this case, 15 lattice nodes.
note that the resolution of the boundary layer is'2.5 that of
Akhavan’s @2#. A single Reynolds number Red5850 was
chosen well above the critical range for transition to turb
lence, 500,Red,550, and therefore the current investigati
is not concerned with transition in the sense of finding cr
cal Reynolds numbers, but with the generation and evolu
of turbulent bursts in the flow at critical phases. Furthermo
critical scales associated with the vortices at the point
transition to turbulence at these phases are examined. Fi
comparison is made between direct numerical simulation
a two-dimensional~2D! and a three-dimensional chann
performed using the lattice Boltzmann model. In both cas
148 grid points were used in they direction, between the
channel walls, and 128 in the continuous directions.

III. RESULTS AND DISCUSSION

Figures 2~a! and 2~b! indicate the evolution of the

normalized turbulent intensityq* 5A(ux8
21uy8

21uz8
2)/

A(ux
21uy

21uz
2) over approximately half a period for bot

the 2D and 3D computational domains. The overbar rep
sents averaging over all points with the samey value and the
prime superscripts indicate fluctuating values of veloc
Throughout the paper, a superscript* represents a dimen
sionless quantity withx* 5x/a, y* 5y/a, and z* 5z/a.

FIG. 2. Evolution of turbulent intensity across the width of
channel for~a! a two-dimensional and~b! a three-dimensional flow
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Note that in the two-dimensional case,uz85uz50. Superim-
posed on the plots are the lines of zero velocity~black! and
in Fig. 2~b! the maximum velocity magnitude,~white! which
serve as the references of flow reversal and maximum ve
ity, respectively. Both these lines were calculated from
exact analytical solutions for laminar flow. A comparison
Figs. 2~a! and 2~b! indicates that the maximum turbulen
intensities are generated at different phases for the t
dimensional and three-dimensional simulations. In b
cases, the initial disturbance field appears localized near
wall. In the two-dimensional case, the turbulent energy pe
are near the linear critical layer and neighboring inflexi
points with the disturbances quickly migrating toward t
center of the channel in agreement with quasisteady lin
stability theories@13#. In the three-dimensional case, there
also an instability atvt5p, however, a significantly large
burst of turbulence is generated in the region of the ma
mum flow velocity atvt53p/2 in agreement with previous
experimental results. For the three-dimensional case, we
that the results are in good agreement with the experim
@6–11# in terms of the phase and relative channel location
which rapid turbulence develops and we now proceed to
amine the mechanism which generates this phenomenon

Pierrehumbert@14# has investigated a short-wave instab
ity of two-dimensional eddies in an inviscid fluid whil
Landman and Saffman@15# have extended this work for el
liptical flow when the viscosity is nonzero. In this case, t
nondimensional parameters of primary interest are the
man numberEg54pnk2/g, whereEg is based on the vor-
ticity g with k the wave number andb52e/g5(x2

21)/(x211). The parameterb is the ratio of straine to
vorticity andx is the aspect ratio of the elliptical streamline
On performing a stability analysis of an elliptical flow whic
is an exact solution of the Navier-Stokes equations@15#, a
stability boundary in the Ekman number versus stream
eccentricity plane can be found. Considering a viscous in
bility with a length scalel, two bounds can be defined.
lower bound l 0 associated with the wave number,l 0
52p/k0 , defines the minimum length scale a disturban
requires and in the context of the current investigation,
macroscopic length scale of interest isd which represents the
upper limit of the length scale so thatl 0< l<d. It is conve-
nient to normalize the length scale to the Stokes bound
layer thicknessl * 5 l /d. Figure 3 displays thez component
of the dimensionless vorticity,g* 5ga/U0 , as a function of
(x* ,y* ,z* 5Z* /2) over half the channel width (0<y* <1)
at selected phases of the oscillation period. Thex component
of g* is shown in Fig. 4 as a function of (x*
5X* /2,y* ,z* ) at the same phases as Fig. 3. Here,X* and
Z* are the dimensionless grid lengths in the continuousx and
z directions, respectively. A comparison of Figs. 3 and
determines the extent to which the vortices are two dim
sional or three dimensional.

At vt51.06p @Fig. 3~a!#, gx* is significantly smaller than
gz* , indicating that the circulations are predominantly tw
dimensional. Here, vortices in the boundary layer (y*
.0.8) are sheared and streaks of vorticity can be obser
Treating these as ellipses and with an ellipse aspect ratx
2-3
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'3, a length scalel 0* ;2 is obtained. Therefore, the secon
ary instability mechanism appears unlikely to be respons
for the transient growth and spread of the turbulence at
phase but rather is caused by the primary instability as
scribed in, for example, Refs.@2,16#. However, this primary

FIG. 3. Normalized vorticity calculated from the thre
dimensional simulations atz* 5Z* /2 for ~a! vt51.06p, ~b! vt
51.22p, ~c! vt51.33p, ~d! vt51.38p, and~e! vt51.45p.
02630
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instability is fundamental to the development of vortices
the boundary layer and these persist and increase in vort
as the flow accelerates as shown in Fig. 3~b! (vt51.22p).
Here, the magnitude ofgx* is comparable although slightly
smaller thangz* in the boundary layer, indicating that th

FIG. 4. Normalized vorticity calculated from the three
dimensional simulations atx* 5X* /2 for ~a! vt51.06p, ~b! vt
51.22p, ~c! vt51.33p, ~d! vt51.38p, and~e! vt51.45p.
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EVOLUTION OF TURBULENCE IN AN OSCILLATORY . . . PHYSICAL REVIEW E68, 026302 ~2003!
three-dimensional motion is developing in the bound
layer. This three-dimensional motion is in part due to t
vortices in the boundary layer tilting about they andz axes
and in part due to a rotation~predominantly in they-zplane!
along the major axes of the vortices. The two-dimensio
circulations outwith the boundary layer persist and appea
pull the turbulence within the Stokes layer into the main flo
further tilting the vortices in the boundary layer region.
this phase (vt51.22p), a length scale ofl 0* ;1 is obtained
based on an aspect ratio ofx'3. We note thatl 0* is the same
order of magnitude asd and indeed there is no evidence
rapid three-dimensional transition at this phase@Fig. 2~b!#.
The increase in turbulent intensity appears to be a resu
the tilting and rotational motion of the originally two
dimensional vortices in the boundary layer.

The continual stretching and tilting break up the elonga
vortices forming a range of elliptical length scales which c
be observed atvt51.33p @Fig. 3~c!#. Here,l 0* reaches mini-
mum values'0.5 and is now approaching the correct ord
of magnitude enabling short-wave instabilities to exist. W
note that this is the point just prior to the onset of the ra
transition to fully developed three-dimensional turbulen
As the flow further increases in velocity,vt51.38p @Fig.
3~d!#, l 0* reaches minimum values of'0.4. From Fig. 2~b!,
we note that this phase represents the region in the flow
the rapid increase and spreading of turbulent intensity,
indeed three-dimensional, approximately spherical, vorti
with radii r &0.25d exist, two-dimensional slices of whic
can be seen in Figs. 3~d! and 4~d!. This phase in the flow
corresponds to maximum velocity in the bulk flow within th
boundary layer. As the flow begins to decelerate, Figs. 3~e!
and 4~e!, at vt51.45p, the turbulence is fully three dimen
sional and extends toward the center of the channel.

The phase at which a rapid transition to turbulence
h.
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l.

J

4
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observed in the current investigation is consistent with p
vious numerical investigations@2,13# and previous experi-
mental results@6–11#. Costamagna, Vittori, and Blondeau
@13# observe similar behavior for the values of Red compa-
rable to that used in the present study in terms of the ini
generation of vortical streaks in the boundary layer@Fig.
3~b!#, which rotate in a similar manner as previously d
cussed and which move into the bulk flow@13#.

Thus the initial generation of fluctuations is caused by
primary instability at flow reversal. These vortices persist
the boundary layer, shearing, stretching and tilting, and
evitably breaking up. In the region of maximum flow velo
ity, this process yields vortices of a size enabling short-wa
instabilities to exist and it is at this region where a rap
transition to fully developed three-dimensional turbulen
occurs. This rapid transition occurs in the boundary layer a
propagates into the bulk flow.

IV. CONCLUSION AND FUTURE WORK

In conclusion, the LBM simulations of two-dimension
flow were consistent with two-dimensional linear stabili
analyses, while the three-dimensional simulations were
good agreement with the experimental observations. E
dence has been presented to support the existence of a
cous secondary instability mechanism. Further analysis
this phenomenon over a wide range ofa and Red is required
to clarify the precise role of this instability mechanism
generating explosive turbulent growth in oscillatory flows
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